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THE PROBLEM OF DECENT~LIZED CONTROL WITH A DISCONTINUOUS PAYOFF FUNCTION* 

A.N. EPMOLOV 

The problem of decentralized control /l/ concerning the meeting of two 
players who arrive at a fixed place at random instants of time is con- 
sidered. The players possess partial information about the uncontrolled 
factors, that is, they only know the instant of their own arrival at the 
designated site. In the case of the players , the common aim is to wait 
for one another while, at the same time, spending the smallest possible 
amount of time waiting. The discontinuity of the decision-making criterion 
is a special feature of the problem under consideration. The properties 
of the optimal strategy (OS) of a group /l-5/, that is, of the two players 
who are meeting, are investigated and a method is proposed for construct- 
ing it. An example of the location of an optimal strategy is presented 
for the case when there is a uniform distribution of the probability of 
the instants of arrival in an interval. 

1. Formulation of the problem. Two players have arranged to meet at a designated 
place. However, the instants of time of their arrival, t, and t,, are unknown in advance and 
are not decided upon by the players. It is only known that these instants randomly take 
values from Rt that their distribution is identical and that it is independently specified by 
means of a probability measure P. It is assumed that the measure piis defined on a Bore1 o- 
algebra of the space R and that it is positive and regular, i.e. for any measurable A c R 
and any E> 0, an open set Q and a closed set E exist such that EC: A c Q and p((Q \ E)< 

8 /6/. 
Each player may stay at the designated place and wait for his partner for as long as he 

may desire, and we denote the durations for which the players wait at the designated site by 
ux > 0, z4.J > 0. The payoff of the group of two players (of the performing side) is composed 
of the agreed--upon value of an encounter pt if an encounter has taken place, from which the 
time expended by the two players in waiting is subtracted. Hence, if the players arrive at 
the designated site atthe instants of time t, and t, and wait for times z+ and u,,their payoff 
is determined using the formula 

P - (4$ - &), if t, < t*< t, + 81 

f (tlv tw @I. %J = P - @l. - &?), if 1 t, < t, < t, + =a v.9 
- ul=ua otherwise 

Let us denote the set of all Bore1 measurable functions u :R -+ [O,+co) by U. Allpossible 
pairs 

(% (.), ua (*)), nt (*) E u 0 = 1, 2) (W 

are strategies of the performing side (of the two players), where ut(t) has the meaning of the 
length of time for which the i-th player has waited if he has arrived at the designated place 
at the instant of time t. If the partners have chosen a certain strategy (1.2), the expec- 
tation value of the payoff is 

The aim of the group of players is to maximize the functional (1.3). 
It will be shown that there exists an optimal strategy (OS) for the performing side ftbe 

question of the uniquenessofthe OS is not considered) which possesses the properties: a) 
symmetry, that is, the OS has the form (U,(W), U* (.)) (Lemma 1); b) stepwise behaviour, that is, 
the function u*(t) -I- r has the form shown in Fig.1 (Lemma 3). A method of calculating the 
OS when the measure p and the value of an encounter pare specified is also presented (Theorem 
1). 
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For brevity, we shall henceforth write simply du instead of d+(t). 

2. The symmetry and step-wise behaviour of the optimal strategy. We will 
show that there are symmetry strategies among the optimal strategies. 

Fig.1 

and prove the inequality 

Lemna 1. For any strategy f1.2), there exist functions 
V(.)E u such that 

F(u(~),L~(~))>~P%, (.),u,(.)) (2.1) 

Proof. The function (1.1) is symmetric, that is, it 
remains invariant where the indices 1 and 2 are permuted and 
the functional (1.3) can therefore be preresented in the follow- 
ing manner: 

Let us put 

l/a (F cu* C-J, u* (-)) -I- F (v* (.), U* (.))) > P (ul (.), Ida @)) (2.2) 

Its left-hand side can be represented in the form 

(P - (t-- QfC+ 

I” = s u* (0 dP + s u* VI dP 
vt~*(e~ =) wPJ,w* -1 

Since, for every fixed ZE R either V*(Z)= %(T) and 

u* et = % @)% the right-hand side of (2.21 only differs in 
quantity I,, we shall have 

P* @I = % @I or U* (t) = ut (zf and 
the fact that, instead of the 

This means that, to prove f2.2), it is sufficient to show that 

Jo <I,, Vz E R $2.3) 

For example, let u~@)>/u~(z). Then, the inequality (2.3) follows from the fact that vt 
u1 (t) + IQ (1) = V* (t) + u*(t) and, according to the definition of u. (t) 

5 (~(4 - uz (0) 4b < 0 
V+%(% zf+4Wl 

This means 
dition (2.1) is 
prove. 

Let us fix 

that the inequality (2.2) also holds, from which it follows in turn that con- 
satisfied either for u (.) = U* 1.) or for u(.)= Y*(.) which it was required to 

a certain function v(.)EU and consider the function 

Lessas 2. The function q((t,U; V(e)) is semicontinuous from above and continuous from the 
right with respect to U. for all tER and v(.)E U. 

The proof follows from the fact that function (1.1) is semicontinuous from above and 
continuous from the right with respect to Ye for all tl,:z,~z> 0 and also from the regularity 
of the measure p. 

Lelmne 3. Among the optimal strategies there exists a symmetric strategy (V 1.1, v (-9 of 
the form 

vi -(t-68,)whenrE[@~,@i f-rif+ if?f 

otherwise 
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and, moreover, the intervals 16i,81 + ui], i~1 do not mutually intersect. 

Proof, lo. For an arbitrary v(.)= U, the function 'p can be represented in the form 

4,(% =; 0 (*))= f 
(-a, I)\L@) 

(P-(t--))%$ j (-s--((t))&+ 

J (P-P--))++ [ (-.-V:+ 

(2.4) 

Let e E 17,7 + 4 _ Then, by using the representation (2.41, we obtain 
9, (e, a - (9 - 7); u (.)) = ‘p (T. rr; u i.)) - M= + K (2.51 

where M and X are independent of u and M= c(~(e)---(r))> 0. 
Let us now consider a certain symmetric optimal strategy (u(.), u(.)) which exists accord- 

ing to Lem 1. We fix -CER and consider a sequence {rj) which converges to T from the 
right. Let us assume that, for each i=1,2 . . . . . there exists UJ E arg rn~r cp (~j, U; u (.)) such 
that Uj+%j>/a. (Here and subsequently, max is chosen with respect to ~>i) if nothing is 
stated to the contrary). We shall show that 7 then also possesses the same property, For 
any j= 1,2,... and U' E LO, Ujf, cp (zj, uj; 11 f.)) >, g, (7~. u'; z (.)). Whence, 
(2.5), we have 

by making use of relationship 

9 ('7 Uf + @j - -0; U (.)) > Cp (7, IL' + (Tj - T); U (.)) 

Consequently, for any uE (O,uj, it is found that ~2-0 such that r+ ~>,a and 

'p (? v; u (.)) > 'p (% u; u (.)) (2.6) 
Since the function g,(%~;u(.)f is continuous from the right with respect to II, (2.6) is 

also valid when u= 0. This means that a UE ~~~~~~~(?,~;~(.))is found for the chosen T which 
satisfies the condition ~+@>,a. 

The assertion which has been proved signifies that, for every instant T, there exists a 
minimum Bdr such that a u=srgmar s,(%u,u(.)) is found which satisfies the condition V+ 
e > T. It follows from inequality (2.6) that, for every t<B and u~argrnaxp(t,~: u(.)), ,,_I_ 

t<e 
u (-I)3 
a (-)I 

such 

that 

is satisfied (otherwise 0 would not be the minimum of those such that ;~brgmb;‘~+.(e,“~: 
e<z<u.+e) exists. This means that there is a set (BOER, ~EI) for the strategy (u (.). 
such that, for any 1~1~ there exists 

Vi E a*msX 'p (es, ZA; 21 (,)) 12.7) 
that 
a) t + IT< f3i if t < Bi, v E argmax 'p (t, U; u (.)) 
b) u (0 + t d 6i + Uir t E lei, Oi + uil. 
20. We shall use the notation 

Y (f) = !’ vi- (t- e,h if t E fe,, 0,+ Ui~ 
cl otherwise (2.8) 

Let us show that F(v(.), u(.))>F(u(.), u(.)).It follows from the definition of the set L (or 

Whence, by using the 
(2.7), (2.8), we obtain 

= (7) B ((T + = (T), m)) - = (T)P (L (+,I dp (T) 

definition of the functional F of the function cp and relationships 

‘laF(y(.), ~(~))-vrF(U(~), wt.))= 

2 Ic$’ &+I (v to,, 0 (T) i 7 - ei; 24 1.1) - v Pi, u (5) + 

t--q ~(.)))~~(T) 

(2.9) 

The right-hand side of the inequality (2.9) is non-negative since v(r)+r--@ei = ui~argmax 
cp (CQ, u; u (.)L 2 E I&, ei + 4 

Hence, the function u(t)= U, defined by relationship (2.8), is optimal and has the form 
described in the condition of the lemma. 

3. COIlStrUCtiOIl Of Optimal Strategies. Let us consider the function 
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Here, the set (a, b] is assumed to be empty when a> b. 

Lemna 4. Let uoI < UO". Then, for any r, g (7, U, U0') - g (77 u9 U0") is a non-negative 
monotonicallyincreasingfunction of u and the function g(t, u, uO) is continuous with respect 
to ug. 

Proof. According to the definition of the function g(? uT %) 

g(r, e, ugl)- g@, 11, 110") = s (6" - UO') dp + s (uu" - (t - 7)) dp 
(T+Y.~+U07 (z+max Cu. u.‘). r+uo”l 

(3.3) 

The expression on the left-hand side of this equality is non-negative and does not 
increase monotonically with respect to u since the integrands are non-negative. The con- 
tinuity of g(z,u,u,) also follows from equality (3.2). 

For any r and u,, the function g(r,u,u,) is semicontinuous from above and continuous 
from the right with respect to U. The proof is analogous to the proof of this assertion for 

cp (r, a; u (.)). 
Let us use the notation 

VO (7) = {uO > 0 I max g (z, u, uo) = g (.c, uo, 4) 

Theorem 1. A function uO(t)E V,(t), t ER exists such that a strategy (v(*),v(.)) gives 
a maximum to the functional (1.3), where 

v(z)= rnnrx (uO (t) - z + t), T E R (3.3) 

Proof. According to Lenma 3, a set of pairs {(e,, u*)* iEZ} exists such that the 
intervals LOi, 6* + Vi], i E Z do not mutually intersect and the function 

v(t)= 
( 

Vi + 6i --t when TV [8,,6i + v,], if? 1 

0 otherwise 

is such that the strategy (u(.),v(.)) maximizes the functional (1.3). In the case of such a 
function v(t),it is necessary to construct a function r&,(t) which satisfies the conditions 
of the theorem. Since (u(.),v(.)) is an optimal strategy, then /l/ 

rp (z, u (2); v (e)) = max 'p (r, u; u (.)), VT E R (3.4) 
When z = 8‘ and u E ]O,V~] 

cP(Gu;v(.))= s (P-(t--N+- s (Vi-(t-7))dp- 
cr.r+u1 W+uB~+nil 

up((- m,r) iJ (r + u, cQ))- c 0 0) @J 
(--m.r)L;z+‘i,“i 

The last term is independent of u and 

g (r, uit vi) ,2 g (t3 U, Vi)7 U E 109 vi1 

therefore follows from (3.4). 

13.5) 

It may be shown in a similar manner that inequality (3.5) also follows from (3.4) in the 
case when U> vi since the quantity 

S v (4 dp 
--m.r)UW+%m) 

13.6) 

does not decrease with respect to U. Hence, Vi E V,(O,), i E I. 
When z dO1, Bi + vi], we have C+J (z, 0, 0) = max cp (z, u; v (.)) and this means that g (r, 0, 0) = 

mar g (T, U, 0) since the quantity (3.6) does not decrease with respect to u. 
It remains to show that USE V,(z), uoQ q -(z -Oe,) exists for r 62 [e,, ei + Vi]. 
According to the definition of the functions q(*, u; V(*)) and g(z, u,u,) 

~(z,u~~~-((z-~~))=cp(t,u;v(~))-u~(~e~,~l)- 

S v(t)& ucz [O,vi -(.t - et)] 
@i+oi>-) 

Since cp(r, U, v(.)) reaches a maximum at the point u = Vi - (T - Oi)% it follows from this 
that a point El E 10,~~ - (T - @,)I exists such that 

g(t, %,, vi - (z - e,)) = max g (T, u, Vi - (.t - e,)) 



617 

According to Lemma 4, there exists & E IO, El1 such that g (r, L, L) = mar g (7, u, e,) and 
so on, 

Ihe sequence {&} does not increase monotonically and is bounded, that is, it has a limit 

%l and, moreover, sg E [O, vi - (z - e,)l. For any u > 0, the inequality 

g (TV Sk+lr &J> g (7, U, Sk), k = 1, 2, . . . (3.7) 
is satisfied. 

Since the function g(T,u,u& is continuous with respect to u0 and continuous from the 
right with respect to u, by passing to the limit in (3.7), we obtain 

g (7, %I, u(t) > g (r, UT U&T @ > 0 

The latter signifies that u,E V,(t). The function u,(r), r ER which has been con- 
structed is identical with v(r) when r s [@,, @i + %I and u,, (T) < v(r) when r E: (ei, BI + vi]. 

Equality (3.3) follows from the definition of v(t)which also completes the proof of the 
theorem. 

Remark 1. The assertion of the theorem also remains true in the case when p(R)<i. It 
is sufficient to define the function g (7, II, uo) as: 

gir, =, =iJ) = $ (P--ff- T))dP---(~-P ([r, r+ W]) - $ f% -((t--9)&4 
[7, i-WI Wu.-~+Yl 

Let us give an example oftheconstruction of an optimal strategy 
theorem. Let 

with the aid of this 

P (4 = \ P P) & P PI = 
I, if fEI0, 1) 

x 0 otherwise 

(a uniform distribution of the probability of arrival at the designated place in the interval 

lo, 11). Than, 

g(t, UT %) = 
( 
u(P----Ls), u E [O, uol 
pu i_ G/2-Uu, U~(UO,i--i] 

The set of solutions of the equation 

has the form 

i 

(1 -T), T E[O, ZP- 1) 
FoW= {i-r,O), rEI2P-LPl 

(Oh t =(p. $1 

When P > V,, this means that the unique function which satisfies the conditions of 
Theorem 1, has the form 

However, if p<$, 

” (i) = i - t, t E IO, 11 

then all the functions 

and also the function v(t)= 0, ~CZ (0,il satisfy the conditions of Theoem 1. By calculating the 
value of the criterion F(k(~),%(.)) and carrying out an optimization with respect to the 
parameter, we obtain that, when P>V5, the optimal strategy v(t) = 1 - L, t E IO, Ij, when 
P < I/* , the optimal strategy u (t) = 0, t E 10, il and, when p=VII, both strategies are 
optimal. 

Remark 2. If the probability distribution for the time of arrival at the agreed place 
is not the same in the caee of the two players then, generally speaking, the optimal strategy 
will not possess the properties of symmetry and step-wise behaviour. For example, in the case 
when 

Psi(A)= S&(t)&, r=1,2 

pI (t) =:+' erF (-cd), t E R 

m (9 = 
ww, if tE[-6*6] 
o otherwise 
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it can be shown that any optimal strategy is asymmetric and non-step-wise in character for a 
corresponding choice of the numbers p and b. 

1. 
2. 

3. 
4. 

5. 

6. 
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ONE SELFMODELLING SOLUTION OF A PROBLEM ON- A PLANAR LAMINAR JET* 

G.I. BURDE 

The problem of the flow of a laminar jet which does not mix with the 
fluid surrounding it is treated in the boundary-layer approximation. It 
is assumed that both fluids are incompressible, that their surface of 
separation is smooth and that the jet does not break up. A selfmodelling 
solution (in Mieses variables) of the planar problem is obtained for the 
special case when the viscosities of the fluids are inversely pro- 
portional to their densities. 

This problem has been treated previously in the case of a planar 
/l, 2/ and axially symmetric /3-7/ jet using different versions of the 
integral method /l, 3, 5, 7/ and also using an asymptotic method /2, 4, 
6/ which yields the solution at large distances from the source. 

1. The flow domain is 

Fig.1 

shown schematically in Fig.1. Quantities referring to the emitted 
and external fluids are denoted by means of the indices 1 and 2. 
The equations of motion in the boundary layer approximation have 
the form 

(1.1) 

The conditions for the continuity of the velocities and 
the stresses on the boundary of separation in this approximation 

as well as the conditions on the axis of the jet and at infinity and the integral relationships 
expressing the laws of conservation of mass and momentum are represented in the form (only 
the upper half-plane is considered in view of the symmetry of the problem) 

Y = Y, (x), n, = up, fLldU,lay = ~&L,lay (1.2) 

Y = 0, L'I = 0, &L,lf3y = 0; y+ 00, uz = 0 

Y*(E) 

5 Pl%dY= +, 

U*!L, 

\ ~~124~ + 5 wz*dy =f (1.3) 
0 0 V*(X) 
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